Simple set cardinality estimation through random sampling

نویسندگان

  • Marco Bressan
  • Enoch Peserico
  • Luca Pretto
چکیده

We present a simple algorithm for estimating the cardinality of a set I, based on a RandomSample(I) primitive that returns an element of I uniformly at random. Our algorithm with probability (1−perr) returns an estimate of |I| accurate within a factor (1 ± δerr) invoking RandomSample(I) at most O (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian and Maximum Likelihood Estimation for Kumaraswamy Distribution Based on Ranked Set Sampling

In this paper, the estimation of the unknown parameters of the kumaraswamy distribution is considered using both simple random sampling (SRS) and ranked set sampling (RSS) techniques. The estimation is based on maximum likelihood estimation and Bayesian estimation methods. A simulation study is made to compare the resultant estimators in terms of their biases and mean square errors. The efficie...

متن کامل

Data Streams as Random Permutations: the Distinct Element Problem

We illustrate this by introducing RECORDINALITY, an algorithm which estimates the number of distinct elements in a stream by counting the number of k-records occurring in it. The algorithm has a score of interesting properties, such as providing a random sample of the set underlying the stream. To the best of our knowledge, a modified version of RECORDINALITY is the first cardinality estimation...

متن کامل

Estimation of Random-Effects Model for Longitudinal Data with Nonignorable Missingness using Gibbs Sampling

The missing data problem is common in longitudinal or repeated measurements data. When the missingness mechanism is nonignorable, the distribution of the observed response and indicators of missingness should be modelled jointly using either ‘shared random-effects model’ or ‘correlated random-effects model’. However, computational challenges arise in the model fitting due to intractable numeric...

متن کامل

Numerical Maximum Likelihood Estimation for the g-and-k Distribution Using Ranked Set Sample

The purpose of this paper is to find the estimate of the parameters of k and g   distribution for ranked set sample by numerically maximizing the likelihood function. The estimates named as numerical maximum likelihood estimate, and corresponding mean square error and relative efficiency compared to simple random sampling are computed using a computer simulation. Ranked set sampling is seen t...

متن کامل

Cardinality Estimation for Queries overObjects yMarian

In this paper, we address the problem of estimating cardinalities of queries over sets of objects. We base our estimates on a knowledge of subset relationships between sets (e.g., Students form a subset of People). Previous work on cardinality estimation has assumed that every subset is a representative sample of the set it is taken from. We maintain (ooine) information for the cases where the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.07901  شماره 

صفحات  -

تاریخ انتشار 2015